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Abstract

The paper is aimed at the proportional and derivative controls of vibration of a rotating beam by using a pair of

piezoelectric sensor and actuator layers. Using Hamilton’s principle derives the governing differential equations and the

boundary conditions for the coupled axial-bending vibration of a piezoelectric rotating beam with elastically restrained

root. The analytical method given by Lin et al. is used to determine the transient response of a piezoelectric rotating beam.

The influences of the proportional and derivative control gain factors on the performance of the first two modes of an

elastically constrained beam are investigated. It is found that considering the proportional control law only is not helpful

to the active damping of a rotating beam. Moreover, considering the proportional and derivative controls suitably and

simultaneously enhances the active damping of a rotating beam with an elastic root.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating beams, which have importance in many practical applications such as turbine blades, helicopter
rotor blades, airplane propellers, and robot manipulators, have been investigated for a long time. An
interesting review of the subject can be found in the papers by Leissa [1], Ramamurti and Balasubramanian
[2], Rao [3], and Lin [4]. Much attention has been focused on the undamped vibration problems. Lin et al. [5]
and Lin and Lee [6] studied the passive damping of a rotating beam. Lin et al. [7] studied the active damping of
a rotating cantilever beam by using the derivative control law. So far, little research has been done on the
active-damping problem of a rotating smart beam because of its complexity.

Turcotte et al. [8] studied the vibration of a mistuned bladed-disk assembly using nonrotational structurally
damped beams. The structural damping was introduced through a complex bending rigidity. Patel and
Ganapathi [9] studied the free torsional vibration of nonrotating damped sandwich beams. Friswell and Lees
[10] studied the free vibration of simply supported nonrotating damped beams. Lin et al. [5,6] investigated the
vibration and instability of a rotating structurally and viscously damped beam with an elastically restrained
root and root damping. The complex frequency relations among different systems were revealed. The
instability of divergence, oscillating and non-oscillating motions were predicted exactly via the relations. The
above literature investigated the passive damped vibration problems. Piezoelectric materials have been applied
to the active control of structural vibrations and noises. Owing to the complexity of analytical methods the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a aa+ah+as

ai dimensionless rotary inertia per unit
length, riI i=ðrhAhL2Þ

Ai cross-sectional area of the beam,
wb

R zi;upper

zi;bottom
dz

b ba+bh+bs

bi dimensionless bending rigidity, EiIi/

(EhIh)
Bi wb

R zi;upper

zi;bottom
zdz

c elastic stiffness constant
dqd, dqp dimensionless derivative piezoelectric para-

meter, �e31;ae31;sBazshs

�
m�33L2ha

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhAhEhIh

p� �� �
ki ; i ¼

d ; p

D electric displacement ½m�33Aaz2s ðhse31;s=

ðm�33LhaÞÞ
2=ðrhAhL2Þ�k2

i ; i ¼ d; p

ēi dimensionless bending rigidity, aEiI i=
ðEhIhÞ

ē ēa þ ēh þ ēs

e piezoelectric constant
E Young’s modulus of beam
Ep electric field intensity
EA EaAa+EhAh+EsAs

EB EaBa+EsBs

EI EaIa+EhIh+EsIs

Hi m�33½hse31;ski=ðm�33LhaÞ�
2; i ¼ d; p

Ii area moment inertia of the beam,
wb

R zi;upper

zi;bottom
z2 dz

j imaginary unit
KT, Ky translational and rotational spring con-

stants, respectively
L length of the blade
m ms+mh+ma

mi dimensionless mass per unit length,
riAi=ðrhAhÞ

n dimensionless centrifugal force, a2
R 1
x m

ðrþ wÞdw
N centrifugal force
Qd, Qp ½�e31;ae31;shs=ðm�33L2haÞ�ki; i ¼ d; p
r dimensionless radius of root, R/L

R radius of root
t time variable

u, v, w displacements in the x, y, and z direc-
tions, respectively

wb width of beam
W dimensionless lateral displacements in

the z direction, w/L

x, y, z principal frame coordinates of blade
zc the neutral axis,

P
i¼a;h;sEihi½ð

Pi
j¼ahjÞ �

1
2hi�=

P
i¼a;h;sEihi

zs h1 þ h2 þ ðh3=2Þ � zc

a dimensionless rotational speed, OL2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhAh=ðEhIhÞ

p
bT, by dimensionless tanslational and rotational

spring constants, bT ¼ KT L3=E2I2;by ¼
KyL=E2I2

g spring constant, g11 ¼ bT=ð1þ bT Þ; g12 ¼
1=ð1þ bT Þ; g21 ¼ by=ð1þ byÞ; g22 ¼
1=ð1þ byÞ

e strain
z decay rate
y setting angle
m permittivity
x dimensionless distance to the root of the

beam, x/L

r mass density per unit volume of beam
rA raAa+rhAh+rsAs

rB raBa+rhBh+rsBs

rI raIa+rhIh+rsIs

s stress
t dimensionless time, t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EhIh=ðrhAhL4Þ

q
$ frequency
O rotational speed
o dimensionless frequency, $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhAhL4=ðEhIhÞ

q

Subscripts

a actuator
h host beam
s sensor
1, 2, 3 in the x-, y- and z-direction, respectively

Superscripts

* independent of ‘*’
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approximated finite element method has been investigated by many researchers [11,12]. So far, little
research has been done on the active-damping problem of a piezoelectric rotating beam because of its
complexity.

Lin et al. [7] investigated the active damping of the first mode of a cantilever beam under a derivative
control law. In this paper, it uses Hamilton’s principle to derive the governing differential equations and the
boundary conditions for the coupled axial-bending vibration of a piezoelectric rotating beam with an elastic
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root. The proportional and derivative control laws are simultaneously used to control the performance of a
rotating beam with an elastic root. The analytical method given by Lin et al. [7] is used to determine the
transient response of the system. Finally, the influence of the proportional and derivative gain factors, the
rotational and translational spring constants and the rotating speed on the natural frequencies and the decay
rate are investigated.
2. Governing equations and boundary and initial conditions

Consider the transient response of a piezoelectric rotating beam mounted with setting angle y on a hub with
radius R, rotating with constant angular velocity O. The upper and bottom surfaces of beam are bonded
sensor and actuator layers, as shown in Fig. 1. A set of differential equations of coupled axial-bending motion
for the rotating beam are derived based on the following assumptions [7]:
(1)
 The beam is assumed to be narrow in both the y- and z-direction, and not loaded in these directions, then
s2 ¼ s3 ¼ 0.
(2)
 The shear deformation is negligible.

(3)
 The rotary inertia is considered.

(4)
 The transverse displacement is same for all three layers.

(5)
 Linear theory of piezoelectricity is applicable.

(6)
 The electric field will be applied to the piezoelectric actuator on the z-direction (perpendicular to the planes

of piezoelectric film). Therefore Ep1 ¼ Ep2 ¼ 0.
The displacement fields of the beam are

u ¼ u0ðx; tÞ � z
qwðx; tÞ

qx
; v ¼ 0; w ¼ wðx; tÞ. (1)
Fig. 1. Geometry and coordinate system of a rotating beam.
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Based on the effect of centrifugal force, the nonlinear term of strain of the host beam is considered:

�1 ¼
qu0

qx
� z

q2w
qx2
þ

1

2

qw

qx

� 	2

; �2 ¼ 0; �3 ¼ 0. (2)

The kinetic energy T of the beam is

T ¼
1

2

Z L

0

Z
A

V
*
�V
*
rdAdx, (3)

where the velocity vector of a point (x, y, z) in the beam is

V
*
¼

qu

qt
þ O sin yðzþ wÞ þ yO cos y


 �
i

þ ½ðxþ Rþ uÞO cos y�j þ
qw

qt
� ðxþ Rþ uÞO sin y


 �
k. ð4Þ

The extended potential energy including the electric contribution is

U ¼
1

2

Z
u
s1�1 du�

1

2

Z
u

Ep3D3 duþ
1

2
KT w2ð0; tÞ þ

1

2
Ky

qwð0; tÞ

qx


 �2
. (5)

The constitutive equation of the piezoelectric material is

s1 ¼ cE
11�1 � e31Ep3 ,

D3 ¼ e31�1 þ m�33Ep3 . ð6Þ

The piezoelectric layer is used to sense the vibration of the rotating beam. The charge accumulated on the
layer due to the direct piezoelectric effect is evaluated by

q ¼ wb

Z
e31�1 dx. (7)

Considering the sensor to be a parallel capacitor, the voltage of the sensor is

V s ¼
hs

mE
33L

Z
e31�1 dx. (8)

In closed-loop control, the control voltage on the piezoelectric actuator is designed by the following
proportional and derivative control laws [13]

V a ¼ �kpV s � kd

qVs

qt
, (9)

where kd and kp are the derivative and proportional gain factors.
Application of Hamilton’s principle yields the following governing differential equations:

� rA
q2u0

qt2
þ rB

q
qx

q2w
qt2

� 	
� 2rAO sin y

qw

qt
� rBO2 qw

qx

þ rAO2ðxþ u0 þ RÞ þ
qN

qx
þ EA

q2u0

qx2
� EB

q3w

qx3
�QpðBa � AazsÞ

q2w

qx2

� 2QdAa

q2u0

qx qt
þQdðBa þ AazsÞ

q3w
qt qx2

þHp Aau0 � Aazs

qw

qx

� 	

�Hd Aa

q2u0

qt2
� Aazs

@3w

@t2@x

� 	
¼ 0, ð10Þ
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� rB
q2

qt2
qu0

qx

� 	
þ rI

q2

qt2
q2w

qx2

� 	
þ rBO2 qu0

qx
� rIO2 q

2w

qx2
þ 2rAO sin y

qu0

qt

� 4rBO sin y
q2w
qtqx
� rA

q2w
qt2
þ rBO2 sin2 yþ rAwO2 sin2 y

þ
q
qx

N
qw

qx

� 	
þ EB

q3u0

qx3
� EI

q4w

qx4
�QpðBa � AazsÞ

q2u0

qx2

�Qd ðBa þ AazsÞ
q3u0

qx2@t
� 2Bazs

q4w
qt qx3


 �
þHp Aazs

@u0

@x
� Aaz2s

@2w

@x2

� 	

�Hd Aazs

q3u0

qx qt2
� Aaz2s

q4w
qt2qx2

� 	
¼ 0 ð11Þ

and the associated boundary conditions.
At x ¼ 0,

u0 ¼ 0, (12)

EB
qu0

qx
� EI

q2w
qx2
�Qp Bau0 � Bazs

qw

qx

� 	

�Qd Ba

qu0

qt
� Bazs

q2w
qtqx

� 	
þ Ky

qw

qx
¼ 0, ð13Þ

rB
q2u0

qt2
� rI

q2

qt2
qw

qx

� 	
þ rIO2 qw

qx
� rBO2ðxþ u0 þ RÞ

þ 2rBO sin y
qw

qt
�N

qw

qx
� EB

q2u0

qx2
þ EI

q3w
qx3

þQpðBa � AazsÞ
qu0

qx
þQd ðBa þ AazsÞ

q2u0

qx qt
� 2Bazs

q3w
qtqx2


 �

�Hp Aazsu0 � Aaz2s
qw

qx

� 	
þHd Aazs

q2u0

qt2
� Aaz2s

q3w

qt2qx

� 	
þ KT w ¼ 0. ð14Þ

At x ¼ L,

N þ EA
qu0

qx
� EB

q2w

qx2
�Qp Aau0 � Aazs

qw

qx

� 	
�Qd Aa

qu0

qt
� Aazs

q2w
qt qx

� 	
¼ 0, (15)

EB
qu0

qx
� EI

q2w
qx2
�Qp Bau0 � Bazs

qw

qx

� 	
�Qd Ba

qu0

qt
� Bazs

q2w
qt qx

� 	
¼ 0, (16)

rB
q2u0

qt2
� rI

q2

qt2
qw

qx

� 	
þ rIO2 qw

qx
� rBO2

ðxþ u0 þ RÞ

þ 2rBO sin y
qw

qt
�N

qw

qx
� EB

q2u0

qx2
þ EI

q3w

qx3

þQp Ba � Aazsð Þ
qu0

qx
þQd ðBa þ AazsÞ

q2u0

qx qt
� 2Bazs

q3w
qt qx2


 �

�Hp Aazsu0 � Aaz2s
qw

qx

� 	
þHd Aazs

q2u0

qt2
� Aaz2s

q3w

qt2 qx

� 	
¼ 0. ð17Þ

It should be noted that there exist the terms in Eqs. (11), (14), (17), frBO2 sin2 y; rBO2ðxþ u0 þ RÞg,
independent of time. The first term represents a small transverse static centrifugal force due to the coupled
effect of the rotational speed and the small difference between the geometry center and the neutral one at
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which the bending stress is zero. The last term represents a static axial centrifugal force. Because these will not
affect the dynamic behavior, the static term is negligible in studying the dynamic behavior of beam.

Because the bending motion dominates in the vibration of a beam and the natural frequency of the
longitudinal motion is greatly higher than that of the bending motion, the effect of longitudinal displacement
is negligible. Moreover, the lateral vibration of a blade subjected to low rotational speed is dominant and the
effect of the Coriolis force may be neglected [4]. In this paper, assume that the beam is in extensional and the
effect of the Coriolis force, 2rO sin yðqw=qtÞ of Eqs. (10), (14), (17), is neglected. Moreover, because the sensor
and actuator layers are considered to be thin, the axial force in Eq. (10) is dominated by the centrifugal force,
rAO2ðxþ RÞ. As a result, the centrifugal force N can be expressed as

NðxÞ ¼ O2

Z L

x

rðxÞAðxÞðRþ xÞdx. (18)

The governing equation in terms of the transverse displacement w, becomes

rI
q2

qt2
q2w

qx2

� 	
� rIO2 q

2w

qx2
� rA

q2w

qt2
þ rAO2sin2 ywþ

q
qx

N
qw

qx

� 	

� EI
q4w

qx4
þ 2QdBazs

q4w
qt qx3

�HpAaz2s
q2w
qx2
þHdAaz2s

q4w
qt2qx2

¼ 0. ð19Þ

The boundary conditions at x ¼ 0 are

�EI
q2w
qx2
þQpBazs

qw

qx
þQdBazs

q2w

qtqx
þ Ky

qw

qx
¼ 0, (20)

� rI
q2

qt2
qw

qx

� 	
þ rIO2 qw

qx
�N

qw

qx
þ EI

q3w

qx3

� 2QdBazs

q3w

qt qx2
þHpAaz2s

qw

qx
�HdAaz2s

q3w

qt2qx
þ KT w ¼ 0 ð21Þ

and at x ¼ L,

�EI
q2w
qx2
þQpBazs

qw

qx
þQdBazs

q2w
qtqx
¼ 0, (22)

� rI
q2

qt2
qw

qx

� 	
þ rIO2 qw

qx
�N

qw

qx
þ EI

q3w

qx3

� 2QdBazs

q3w
qt qx2

þHpAaz2s
qw

qx
�HdAaz2s

q3w
qt2qx

¼ 0. ð23Þ

It should be noted that when the sensor and the actuator are neglected, the differential equations are the
same as those given by Lin [14].

In terms of dimensionless quantities listed the nomenclature, the governing differential equation (19) and
the boundary conditions (20)–(23) of the system are non-dimensionlized as follows:

a
q4W

qx2qt2
� aa2

q2W

qx2
�m

q2W
qt2
þmWa2 sin2 yþ

q
qx

n
qW

qx

� 	

� ē
q4W

qx4
� dhp

q2w

qx2
þ 2dqd

q4W

qx3qt
þ dhd

q4W

qx2qt2
¼ 0. ð24Þ
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At x ¼ 0,

� g12a
q3W
qx qt2

þ g12aa2
qW

qx
� g12n

qW

qx
þ g12ē

q3W

qx3

� 2g12dqd

q3W

qx2qt
þ g12dhp

qw

qx
� g12dhd

q3W

qx qt2
þ g11W ¼ 0, ð25Þ

�g22ē
q2W

qx2
þ g22dqp

qw

qx
þ g22dqd

q2W
qx qt

þ g21
qW

qx
¼ 0 (26)

and at x ¼ 1,

�ē
q2W

qx2
þ dqp

qw

qx
þ dqd

q2W

qx qt
¼ 0, (27)

�a
q3W
qx qt2

þ aa2
qW

qx
� n

qW

qx
þ ē

q3W

qx3
� 2dqd

q3W

qx2 qt
þ dhp

qw

qx
� dhd

q3W
qx qt2

¼ 0. (28)

The dimensionless initial conditions of the motion at the tip are

W ð1; 0Þ ¼ w0 and
qW ð1; 0Þ

qt
¼ _w0. (29)

3. Solution method

3.1. Characteristic governing equations and boundary conditions

Assume that the solution to Eqs. (24)–(29) is

W ðx; tÞ ¼ ~W ðxÞelt, (30a)

where ~W represents the complex mode function and l is the complex frequency. They can be expressed as

~W ðxÞ ¼ W̄ RðxÞ þ jW̄ I ðxÞ; l ¼ �zþ jo, (30b)

where z is the decay rate. The imaginary term o is the damped frequency.
Letting ReW ð1; 0Þ ¼ w0, and Re _W ð1; 0Þ ¼ _w0, one obtains

W Rð1Þ ¼ w0 and W̄ I ð1Þ ¼
�1

o
½zw0 þ _w0�. (31)

Substituting Eqs. (30) into the governing equation (24) and the boundary conditions (25)–(28)
and taking the real and imaginary parts apart, the coupled real differential equations can be
obtained:

� ē
d4W̄ R

dx4
� 2dqd z

d3W̄ R

dx3
þ o

d3W̄ I

dx3

� 	
þ a ðz2 � o2 � a2Þ

d2W̄ R

dx2
þ 2zo

d2W̄ I

dx2


 �

þ n
d2W̄ R

dx2
� dhp

d2W̄ R

dx2
þ dhd ðz

2
� o2Þ

d2W̄ R

dx2
þ 2zo

d2W̄ I

dx2


 �

þ
dn

dx
dW̄ R

dx
�m½ðz2 � o2 � a2sin2yÞW̄ R þ 2zoW̄ I � ¼ 0, ð32aÞ
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� ē
d4W̄ I

dx4
� 2dqd z

d3W̄ I

dx3
� o

d3W̄ R

dx3

� 	
þ a ðz2 � o2 � a2Þ

d2W̄ I

dx2
� 2zo

d2W̄ R

dx2


 �

þ n
d2W̄ I

dx2
� dhp

d2W̄ I

dx2
þ dhd ðz

2
� o2Þ

d2W̄ I

dx2
� 2zo

d2W̄ R

dx2


 �

þ
dn

dx
dW̄ I

dx
�m½ðz2 � o2 � a2 sin2 yÞW̄ I � 2zoW̄ R� ¼ 0. ð32bÞ

At x ¼ 0,

g12ē
d3W̄ R

dx3
þ 2g12dqd z

d2W̄ R

dx2
þ o

d2W̄ I

dx2

� 	

� g12a ðz2 � o2 � a2Þ
dW̄ R

dx
þ 2zo

dW̄ I

dx


 �
þ g12dhp

dW̄ R

dx

� g12dhd ðz
2
� o2Þ

dW̄ R

dx
þ 2zo

dW̄ I

dx


 �
� g12n

dW̄ R

dx
þ g11W̄ R ¼ 0, ð33aÞ

g12ē
d3W̄ I

dx3
þ 2g12dqd z

d2W̄ I

dx2
� o

d2W̄ R

dx2

� 	

� g12a ðz2 � o2 � a2Þ
dW̄ I

dx
� 2zo

dW̄ R

dx


 �
þ g12dhp

dW̄ I

dx

� g12dhd ðz
2
� o2Þ

dW̄ I

dx
� 2zo

dW̄ R

dx


 �
� g12n

dW̄ I

dx
þ g11W̄ I ¼ 0, ð33bÞ

g22ē
d2W̄ R

dx2
þ ðg22dqdz� g22dqp � g21Þ

dW̄ R

dx
þ g22dqdo

dW̄ I

dx
¼ 0, (34a)

g22ē
d2W̄ I

dx2
þ ðg22dqdz� g22dqp � g21Þ

dW̄ I

dx
� g22dqdo

dW̄ R

dx
¼ 0. (34b)

At x ¼ 1,

ē
d2W̄ R

dx2
þ ðdqdz� dqpÞ

dW̄ R

dx
þ dqdo

dW̄ I

dx
¼ 0, (35a)

ē
d2W̄ I

dx2
þ ðdqdz� dqpÞ

dW̄ I

dx
� dqdo

dW̄ R

dx
¼ 0, (35b)

ē
d3W̄ R

dx3
þ 2dqd z

d2W̄ R

dx2
þ o

d2W̄ I

dx2

� 	
� a ðz2 � o2 � a2Þ

dW̄ R

dx
þ 2zo

dW̄ I

dx


 �

þ dhp

dW̄ R

dx
� dhd ðz

2
� o2Þ

dW̄ R

dx
þ 2zo

dW̄ I

dx


 �
¼ 0, ð36aÞ

ē
d3W̄ I

dx3
þ 2dqd z

d2W̄ I

dx2
� o

d2W̄ R

dx2

� 	
� a ðz2 � o2 � a2Þ

dW̄ I

dx
� 2zo

dW̄ R

dx


 �

þ dhp

dW̄ I

dx
� dhd ðz

2
� o2Þ

dW̄ I

dx
� 2zo

dW̄ R

dx


 �
¼ 0. ð36bÞ
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3.2. Frequency equations

The fundamental solution of the characteristic differential equations (32) is assumed to be

W̄ RðxÞ

W̄ I ðxÞ

" #
¼
X8
i¼1

Ci

W̄ R;iðxÞ

W̄ I ;iðxÞ

" #
, (37)

where the eight linearly independent fundamental solutions ½W̄ R;iðxÞ W̄ I ;iðxÞ�T, i ¼ 1,2,y,8, of Eqs. (32)
are chosen such that they satisfy the following normalization conditions at the origin of the coordinated
system:

W̄ R;1 W̄ R;2 W̄ R;3 W̄ R;4 W̄ R;5 W̄ R;6 W̄ R;7 W̄ R;8

W̄
0

R;1 W̄
0

R;2 W̄
0

R;3 W̄
0

R;4 W̄
0

R;5 W̄
0

R;6 W̄
0

R;7 W̄
0

R;8

W̄
00

R;1 W̄
00

R;2 W̄
00

R;3 W̄
00

R;4 W̄
00

R;5 W̄
00

R;6 W̄
00

R;7 W̄
00

R;8

W̄
000

R;1 W̄
000

R;2 W̄
000

R;3 W̄
000

R;4 W̄
000

R;5 W̄
000

R;6 W̄
000

R;7 W̄
000

R;8

W̄ I ;1 W̄ I ;2 W̄ I ;3 W̄ I ;4 W̄ I ;5 W̄ I ;6 W̄ I ;7 W̄ I ;8

W̄
0

I ;1 W̄
0

I ;2 W̄
0

I ;3 W̄
0

I ;4 W̄
0

I ;5 W̄
0

I ;6 W̄
0

I ;7 W̄
0

I ;8

W̄
00

I ;1 W̄
00

I ;2 W̄
00

I ;3 W̄
00

I ;4 W̄
00

I ;5 W̄
00

I ;6 W̄
00

I ;7 W̄
00

I ;8

W̄
000

I ;1 W̄
000

I ;2 W̄
000

I ;3 W̄
000

I ;4 W̄
000

I ;5 W̄
000

I ;6 W̄
000

I ;7 W̄
000

I ;8

2
66666666666666664

3
77777777777777775
x¼0

¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775
, (38)

where primes indicate differentiation with respect to the dimensionless spatial variable x.
Substituting solution (37) into the boundary conditions (33)–(35) and the initial conditions (31), the

following relation is obtained:

B11 B12 B13 B14 B15 B16 B17 B18

B21 B22 B23 B24 B25 B26 B27 B28

B31 B32 B33 B34 B35 B36 B37 B38

B41 B42 B43 B44 B45 B46 B47 B48

B51 B52 B53 B54 B55 B56 B57 B58

B61 B62 B63 B64 B65 B66 B67 B68

W̄ R;1ð1Þ W̄ R;2ð1Þ W̄ R;3ð1Þ W̄ R;4ð1Þ W̄ R;5ð1Þ W̄ R;6ð1Þ W̄ R;7ð1Þ W̄ R;8ð1Þ

W̄ I ;1ð1Þ W̄ I ;2ð1Þ W̄ I ;3ð1Þ W̄ I ;4ð1Þ W̄ I ;5ð1Þ W̄ I ;6ð1Þ W̄ I ;7ð1Þ W̄ I ;8ð1Þ

2
666666666666666664

3
777777777777777775

C1

C2

C3

C4

C5

C6

C7

C8

2
666666666666666664

3
777777777777777775

¼

0

0

0

0

0

0

w0

�1

o
ðzw0 þ _w0Þ

2
66666666666666666664

3
77777777777777777775

, ð39aÞ
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where

B11 ¼ 0;B12 ¼ g22dqdz� g22dqp � g21;B13 ¼ g22ē;B14 ¼ B15 ¼ 0,

B16 ¼ g22dqdo;B17 ¼ B18 ¼ 0,

B21 ¼ 0;B22 ¼ �g22dqdo;B23 ¼ B24 ¼ B25 ¼ 0;B26 ¼ g22dqdz� g22dqp � g21;B27 ¼ g22ē;B28 ¼ 0;

B31 ¼ g11,

B32 ¼ �g12aðz2 � o2 � a2Þ � g12dhd ðz
2
� o2Þ þ g12dhp � g12a

2mðrþ 1
2
Þ,

B33 ¼ 2g12dqdz;B34 ¼ g12ē;B35 ¼ 0,

B36 ¼ �2g12azo� 2g12dhdzo,

B37 ¼ 2g12dqdo; B38 ¼ 0,

B41 ¼ 0; B42 ¼ 2g12azoþ 2g12dhdzo,

B43 ¼ �2g12dqdo; B44 ¼ 0; B45 ¼ g11,

B46 ¼ �g12aðz2 � o2 � a2Þ � g12dhd ðz
2
� o2Þ þ g12dhp � g12a

2mðrþ 1=2Þ,

B47 ¼ 2g12dqdz; B48 ¼ g12ē,

B5i ¼ ēW̄
00

R;ið1Þ þ ðdqdz� dqpÞW̄
0

R;ið1Þ þ dqdoW̄
0

I ;ið1Þ,

B6i ¼ ēW̄
00

I ;ið1Þ þ ðdqdz� dqpÞW̄
0

I ;ið1Þ � dqdoW̄
0

R;ið1Þ; i ¼ 1; 2; . . . ; 8. ð39bÞ

Given the initial displacement w0 and velocity _w0, the oscillating frequency and the decay rate can be
easily determined via Eqs. (36), called as a coupled frequency equations, by using the numerical method
proposed by Lin [14].

3.3. Exact fundamental solutions

In general, the closed-form fundamental solutions of two coupled differential equations with variable
coefficients are not available. However, if the coefficients of the equations, which involve the material
properties and/or geometric parameters, can be expressed in matrix polynomial form, then a power
series representation of the fundamental solutions can be constructed by the modified method of Frobinius [6].
Eqs. (32) can be expressed as

Ā1
d4W̄ R

dx4
þ Ā2

d3W̄ R

dx3
þ Ā3

d2W̄ R

dx2
þ Ā4

dW̄ R

dx
þ Ā5W̄ R

þ Ā6
d3W̄ I

dx3
þ Ā7

d2W̄ I

dx2
þ Ā8W̄ I ¼ 0, ð40aÞ

~A1
d4W̄ I

dx4
þ ~A2

d3W̄ I

dx3
þ ~A3

d2W̄ I

dx2
þ ~A4

dW̄ I

dx
þ ~A5W̄ I

þ ~A6
d3W̄ R

dx3
þ ~A7

d2W̄ R

dx2
þ ~A8W̄ R ¼ 0; x 2 ð0; 1Þ, ð40bÞ

where

Ā1 ¼ a0; ~A1 ¼ ā0;

Ā2 ¼ b0; ~A2 ¼ b̄0;

Ā3 ¼ c0 þ c1xþ c2x
2; ~A3 ¼ c̄0 þ c̄1xþ c̄2x

2;

Ā4 ¼ d0 þ d1x; ~A4 ¼ d̄0 þ d̄1x;

Ā5 ¼ e0; ~A5 ¼ ē0;
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Ā6 ¼ f 0; ~A6 ¼ f̄ 0;

Ā7 ¼ g0; ~A7 ¼ ḡ0;

Ā8 ¼ h0; ~A8 ¼ h̄0

in which

a0 ¼ ā0 ¼ �ē; b0 ¼ b̄0 ¼ �2dqdz,

c0 ¼ c̄0 ¼ aðz2 � o2 � a2Þ � dhp þ dhd ðz
2
� o2Þ þ a2mðrþ 1=2Þ,

c1 ¼ c̄1 ¼ �ra2m; c2 ¼ c̄2 ¼ �
1
2
a2m,

d0 ¼ d̄0 ¼ �ra2m; d1 ¼ d̄1 ¼ �a2m,

e0 ¼ ē0 ¼ �mðz2 � o2 � a2 sin2 yÞ; f 0 ¼ �f̄ 0 ¼ �2dqdo,

g0 ¼ �ḡ0 ¼ 2zoaþ 2zodhd ; h0 ¼ �h̄0 ¼ �2zom. ð41bÞ

The eight normalized fundamental solutions of Eqs. (32) are expressed as

W̄ R;j

W̄ I ;j

" #
¼
X1
k¼0

aj;kx
k

bj;kx
k

" #
; j ¼ 1; 2; . . . ; 8, (42)

which can be derived by using the recurrence formula given by Lin et al. [7]. Consequently, upon substituting
these fundamental solutions into the frequency equation (36), the exact complex frequencies of the beam are
obtained.

4. Numerical results and discussion

To demonstrate the efficiency and convergence of the proposed method to solve the vibration problem, the
transient response, the frequency shift and the decay rate of a rotating beam are determined. Fig. 2
demonstrates the transient response of the beam. The initial displacement and velocity are given. The
oscillation of the beam decays away exponentially. In Table 1, the convergence pattern of the complex
eigenvalues of a rotating beam is shown. It shows that the eigenvalues determined by the proposed method
converge very rapidly. The convergent frequencies without the piezoelectric damping are the same as those
given by Lin [14].

Fig. 3 shows influence of the gain factors kd and kp on the frequencies oi and the decay rates zi

of the first two modes of a rotating beam with an elastic root. Figs. 3a and 3c show that without the
proportional and derivative controls, i.e., kd ¼ kp ¼ 0, the frequencies of the first two modes are
the natural frequencies of free vibration of a rotating beam. In the neglect of the derivative control, i.e.,
kd ¼ 0, decreasing the proportional gain factor increases the frequencies of oscillation. Given any propor-
tional gain factor, whatever the derivative gain factors is increased or decreased from zero, the freque-
ncies of oscillation are decreased. Figs. 3b and 3d show that in the neglect of the derivative control,
i.e., kd ¼ 0, whatever the proportional gain factor is given, the decay rates {z1, z2} are zero. In other
words, if kd ¼ 0, considering the proportional control only is not helpful to the active damping of a rotating
beam.

Fig. 3b shows that if kp ¼ 0, considering a positive or negative derivative gain factor will results in a positive
or negative decay rate z1 of the first mode, respectively. It means that if the decay rate is positive, the
amplitude decay exponentially and the system is stable. Otherwise, it is unstable. Increasing the derivative gain
factor kd from zero, the decay rate z1 increases rapidly from zero to a critical value and then decreases slowly.
This fact happens also to the first mode of a cantilever beam [7]. If kpo0, increasing the negative proportional
gain factor enhances the phenomenon. However, if kp40, increasing the positive proportional gain factor
upsets the phenomenon. It is observed from Fig. 3b that in the neglect of the proportional control, if kdo0, the
first decay rate is negative. In other words, the oscillation of the first mode is divergent. But it is observed from
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Fig. 2. Oscillation of a rotating beam [kd ¼ 0.3, kp ¼ 0, g11 ¼ 0:9, g21 ¼ 0:9, w0 ¼ 0.01, _w0 ¼ 0, a ¼ 0.00001, e ¼ 1.722, m ¼ 1.807,

dh ¼ 0.98k2
d , dq ¼ 1.892kd, r ¼ 0.5, a ¼ 1, y ¼ 301].

Table 1

Convergence pattern of the first two eigenvalues of a rotating beam with an elastic root [g11 ¼ 0.9, g21 ¼ 0.9, w0 ¼ 0.001, _w0 ¼ 0,

a ¼ 0.00001, e ¼ m ¼ 1, dh ¼ 0:98k2
d , dq ¼ 1.892kd, r ¼ 0.5, a ¼ 1, y ¼ 301]

No. of terms kd ¼ kp ¼ 0 kd ¼ 0.1, kp ¼ �0.05

o1 o2 o1 z1 o2 z2

15 2.2487 6.9254 2.2321 0.0269 5.7386 0.1147

20 2.2487 6.9254 2.2321 0.0269 5.7386 0.1149

30 2.2487 6.9254 2.2321 0.0269 5.7386 0.1149

40 2.2487 6.9254 2.2321 0.0269 5.7386 0.1149

50 2.2487 6.9254 2.2321 0.0269 5.7386 0.1149

[14] 2.2487 6.9258 – – – –
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Fig. 3d that if kdo�0.3, the second decay rate becomes positive. It means that the oscillation of the first mode
is convergent. Moreover, It is observed from Fig. 3b that if kd40, the first decay rate is positive. In other
words, the oscillation of the first mode will be convergent. But it is observed from Fig. 3d that if kd40.3, the
second decay rate become negative. It means that the oscillation of the second mode will be divergent. It is
concluded that considering the active damping of the first two modes, the derivative gain factor kd should be
limited.

Fig. 4 shows the influences of the gain factors kd and kp and the rotational spring constant g21 on the
frequency and the decay rate of the first mode. It is observed from Fig. 4b that if kd ¼ 0, whatever the
rotational spring constant and the proportional gain factor are, the decay rate is zero. If kd ¼ 1, increasing
the rotational spring constant increases the first decay rate. Moreover, It is observed from Fig. 4a
that increasing the rotational spring constant increases the first frequency of oscillation especially for the case
of kd ¼ 0.
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Fig. 3. Influence of the gain factors kd and kp on the frequencies oi and the decay rates zi of the first two modes of a rotating beam

[g11 ¼ 0:95, g21 ¼ 0:95, w0 ¼ 0.01, _w0 ¼ 0, a ¼ 0.00001, e ¼ 1.722, m ¼ 1.807, dh ¼ 0:98k2
d , dq ¼ 1.892kd, r ¼ 0.5, y ¼ 301].
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It is well known that a rigid root of a rotating beam is considered, i.e., g11 ¼ g21 ¼ 1, increasing the rotating
speed increases the frequency. However, if an elastic root is considered and the root spring constants are small
enough, increasing the rotating speed decreases the first frequency [14]. When the rotating speed increases to a
critical value, the first frequency decreases to zero. Figs. 5a and 5b show the influences of the gain factors kd

and kp and the rotating speed a on the frequency and the decay rate of the first mode. It is observed from
Fig. 5a that the influence of the proportional gain factor on the first frequency is small. But as shown in
Fig. 5b, Its effect on the first decay rate is large. Moreover, increasing the rotating speed a greatly decreases the
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first decay rate of a rotating beam with an elastic root. It is different to that of a cantilever beam with a
clamped root. Lin et al. [7] found that increasing the rotating speed increases the first decay rate of a rotating
beam with a clamped root.

Fig. 5c shows the influence of the proportional gain factor kp and the rotating speed a on the Q-factor. The
definition of the Quality factor is Q�factor ¼ 2pEt=Eloss where Et is the total energy and Eloss is the loss energy
per cycle [7]. When the rotating speed a is very small, the Q-factor is almost constant and small. It means that
the energy dissipation is very large. As shown in Fig. 5b, if kp ¼ 0 and the rotating speed approaches a critical
value, the decay rate approaches zero. In other words, the energy dissipation is negligible and the Q-factor
approaches infinite, as shown in Fig. 5c. The Q-factor of a rotating beam with an elastic root obviously
depends on the proportional gain factor and the rotating speed.
5. Conclusion

In this paper, the proportional and derivative control laws are simultaneously applied to the active damping
of the first two oscillating modes of a rotating beam. It has been found by Lin et al. [7] that the derivative
control law is helpful to the active damping of the first oscillating mode. But considering the proportional
control law only is unuseful for the active damping. However, considering the proportional and derivative
controls suitably and simultaneously will enhance the active damping of a rotating beam with an elastic root.
Moreover, it is also found that:
(1)
 Considering the active damping of any mode, the derivative gain factor should be limited.

(2)
 Increasing the rotating speed a greatly decreases the first decay rate of a rotating beam with an

elastic root. But increasing the rotating speed increases the first decay rate of a rotating beam with a
clamped root.
(3)
 The Q-factor of a rotating beam with an elastic root obviously depends on the proportional gain factor
and the rotating speed.
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